ダガーモノイダル圏としてのHilbの特徴づけが最近出てたけど、同じような仕方でRelも特徴づけできるらしい

They just don't stop! Besides their Joy of Abstraction book club, the Topos Institute also has *another* way for you to start learning category theory.

It's called the CT Outreach Panel, and it's happening on March 16, 17:00 UTC.

Some of the best explainers of category theory in the world - Emily Riehl, Eugenia Cheng, Tai-Danae Bradley, Paul Dancstep and Oliver Lugg - will explain their approaches to the subject and answer questions.

You can submit questions here:

topos.site/ct-outreach-self-le

This post by @johncarlosbaez about rig categories is great!
mathstodon.xyz/@johncarlosbaez

It got me thinking about my favorite example that's not exactly FinSet. It's a rig category Z whose objects are integers. Its only morphisms are automorphisms, and each automorphism group is ℤ/2 = {±1}. Even though addition of integers is commutative, the symmetry isomorphism in Z is nontrivial! The symmetry isomorphism
β: m + n ≅ n + m
is the element (-1)ᵐⁿ in Z(m+n,m+n).

(1/5)

finally found a journal for my expository paper on (co)simplicial (co)presheaves! first solo publication to actually appear (one of my thesis ones was accepted a couple of months ago but seems to be stuck in academic publication limbo)

cm.episciences.org/10359

「もうすぐD2が終わる」
「D2が終わるとどうなるの?」
「知らんのか、D3が始まる」

人々本格的に移動しつつある? Twitter完全に死亡するまで移行することは考えてないが……

Imagine mentioning "symplectic meanders associated to seaweed" to someone, and imagine them believing it is not part of an elaborate joke. This cannot be done.

mathlogに投稿しました

圏論に元を取り戻そう
mathlog.info/articles/2557

高評価、コメント、待ってます

@mathmathniconico
これはどうもありがとうございます。あの見方は、結局米田埋め込みが極限を保つから、極限に対しては集合論的に扱えるという話になります。そう考えると、圏論の基本を学んだときにすでに出会っているはずのものなのですが、Leinsterの文章を読むまで気づかないものですね…

マストドンのbioがM2のままだったからD1に更新した

ますとどん5億年ぶりにみたけど人少なくないか

マストドンのbioがM1のままだったからM2に更新した

Show older
Mathtodon

A Mastodon instance named Mathtodon, where you can post toots with beautiful mathematical formulae in TeX/LaTeX style.