もう、正直、Whittaker-Watson と Polya-Szego で一生終わってもいいと思ってる

${ \small 0 \longrightarrow Z \longrightarrow M \xrightarrow{\;\sim{}\;} \bigoplus_{i=1}^{t} \mathcal{O}[[T]]\big/(F_i(T)^{n_i}) \oplus \bigoplus_{j=1}^{s} \mathcal{O}[[T]]\big/(\varpi^{m_j}) \longrightarrow Z' \longrightarrow 0 }$

${ \tiny 0 \longrightarrow Z \longrightarrow M \xrightarrow{\;\sim{}\;} \bigoplus_{i=1}^{t} \mathcal{O}[[T]]\big/(F_i(T)^{n_i}) \oplus \bigoplus_{j=1}^{s} \mathcal{O}[[T]]\big/(\varpi^{m_j}) \longrightarrow Z' \longrightarrow 0 }$

$\lower2.5pt{\huge ⬡}\hspace{-1.1em}湖$ 湖池屋 

\hspaceは行けるのですね。勉強になりました。お騒がせしまして、どうもすみません。

\hspace は使えるのかな?さすがにムリだと推測してる

$\underline{\text{Hecke Ring}}$

$m=1,2,\cdots$に対して以下で定義される作用素$T_k(m):M_k(\Gamma)\rightarrow{M_k(\Gamma)}$を$\color{red}{\text{Hecke operator}}$という.
$\small \{T_k(m)f\}(z)=m^{k-1}\sum_{ad=m}^{} \sum_{b=0}^{d-1} d^{-k}f\left(\frac{az+b}{d}\right)$

また,

$\mathbb{T}_k=\mathbb{C}[T_k(m)|m=1,2,\cdots]$

を$\color{red}{\text{Hecke Ring}}$といい, これは可換な$\mathbb{C}$代数である.

$\underline{\text{Hecke Ring}}$

$m=1,2,\cdots$に対して以下で定義される作用素$T_k(m):M_k(\Gamma)\rightarrow{M_k(\Gamma)}$を$\color{red}{\text{Hecke operator}}$という.
$\tiny \{T_k(m)f\}(z)=m^{k-1}\sum_{ad=m}^{} \sum_{b=0}^{d-1} d^{-k}f\left(\frac{az+b}{d}\right)$

また,

$\mathbb{T}_k=\mathbb{C}[T_k(m)|m=1,2,\cdots]$

を$\color{red}{\text{Hecke Ring}}$といい, これは可換な$\mathbb{C}$代数である.

${ \small p(y;\theta,\phi) = \int_{-\infty}^\infty \exp\{ \frac{y\theta - b(\theta)}{a(\phi) } - c(y, \phi) \} }$

${ \tiny p(y;\theta,\phi) = \int_{-\infty}^\infty \exp\{ \frac{y\theta - b(\theta)}{a(\phi) } - c(y, \phi) \} }$

\begin{equation}
\tiny
\begin{cases}
\; f_1=a\cdot x_2-1=0 & \text{$(x_2\neq 0)$}\\
\; f_2=x_1-2x_3=0 & \text{(中点D)}\\
\; f_3=x_2-2x_4=0& \text{(中点D)}\\
\; f_4=(1+x_1)-2x_5=0& \text{(中点E)}\\
\; f_5=x_2-2x_6=0& \text{(中点E)}\\
\; f_6=x_5x_8-x_6x_7=0& \text{(線分AME)}\\
\; f_7=(x_3-1)x_8-x_4(x_7-1)=0& \text{(線分DMC)}\notag\\
\end{cases}
\end{equation}

$\Longrightarrow $

${ \tiny
g=(2x_1-1)x_8-x_2(2x_7-1)=0 \hspace{7pt}\text{(線分BMF)}
}$

\begin{align*}
\small
\square A_{\mu} - \frac{\partial}{\partial x_\nu} \left( \frac{\partial A_{\nu}}{\partial x_\mu} \right) = - \frac{1}{c \varepsilon_0} j_\mu
\end{align*}

\begin{align*}
\footnotesize
\square A_{\mu} - \frac{\partial}{\partial x_\nu} \left( \frac{\partial A_{\nu}}{\partial x_\mu} \right) = - \frac{1}{c \varepsilon_0} j_\mu
\end{align*}

\begin{align*}
\tiny
\square A_{\mu} - \frac{\partial}{\partial x_\nu} \left( \frac{\partial A_{\nu}}{\partial x_\mu} \right) = - \frac{1}{c \varepsilon_0} j_\mu
\end{align*}

${ footnotesize }$は使えない模様。

${\small {\rm char}_{\Lambda_{{\rm cyc}, \psi}}\left( X_{ K_{\omega \psi^{-1}, \infty}^{{\rm cyc}} } \right)_{\omega \psi^{-1}} = \left(L_p(\psi) \right) }$

${\scriptsize {\rm char}_{\Lambda_{{\rm cyc}, \psi}}\left( X_{ K_{\omega \psi^{-1}, \infty}^{{\rm cyc}} } \right)_{\omega \psi^{-1}} = \left(L_p(\psi) \right) }$

${\scriptsize (F \otimes G)(a, c) = \int^{b}F(a, b) \times G(b, c) }$

${\scriptsize \[(F \otimes G)(a, c) = \int^{b}F(a, b) \times G(b, c)\] }$

Given a (matrix) Lie group $G$ (so $G\subseteq GL_n(\mathbb{C})$), the Lie algebra of $G$ is the set
$$ { \scriptsize
\mathfrak{g} = \{X \in G \mid e^{tX} \in G \; \forall\; t\in \mathbb{R}\}. }
$$

Show older
Mathtodon

A Mastodon instance named Mathtodon, where you can post toots with beautiful mathematical formulae in TeX/LaTeX style.